The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model.
نویسندگان
چکیده
Strong constraints on the neural mechanisms underlying the formation of place fields in the rodent hippocampus come from the systematic changes in spatial activity patterns that are consequent on systematic environmental manipulations. We describe an attractor network model of area CA3 in which local, recurrent, excitatory, and inhibitory interactions generate appropriate place cell representations from location- and direction-specific activity in the entorhinal cortex. In the model, familiarity with the environment, as reflected by activity in neuromodulatory systems, influences the efficacy and plasticity of the recurrent and feedforward inputs to CA3. In unfamiliar, novel, environments, mossy fiber inputs impose activity patterns on CA3, and the recurrent collaterals and the perforant path inputs are subject to graded Hebbian plasticity. This sculpts CA3 attractors and associates them with activity patterns in the entorhinal cortex. In familiar environments, place fields are controlled by the way that perforant path inputs select among the attractors. Depending on the training experience provided, the model generates place fields that are either directional or nondirectional and whose changes when the environment undergoes simple geometric transformations are in accordance with experimental data. Representations of multiple environments can be stored and recalled with little interference, and these have the appropriate degrees of similarity in visually similar environments.
منابع مشابه
Spatial Representations in Related Environments in a Recurrent Model of Area CA3 of the Rat
Recurrent network models of area CA3 in the hippocampus capture faithfully many of the properties of place cells. However, they seem ill suited to explaining the substantial experimental data on place cells in environments with particular visual or geometrical similarities. We show that a model in which the activities of CA3 place cells are determined mainly by modifiable recurrent connections ...
متن کاملA neural mass model of CA1-CA3 neural network and studying sharp wave ripples
We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...
متن کاملPlasticity of directional place fields in a model of rodent CA3.
We propose a computational model of the CA3 region of the rat hippocampus that is able to reproduce the available experimental data concerning the dependence of directional selectivity of the place cell discharge on the environment and on the spatial task. The main feature of our model is a continuous, unsupervised Hebbian learning dynamics of recurrent connections, which is driven by the neuro...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2000